Conservatoire national des arts et métiers

STA109 - Biostatistique

Présentation

Prérequis

Cet enseignement concerne les auditeurs travaillant dans le domaine de la santé (hôpitaux - laboratoires de recherche - industrie pharmaceutique...) ou de la sécurité sanitaire (agences - laboratoires d'analyse ...). Il s'adresse aux personnes amenées à concevoir, gérer et/ou analyser des protocoles d'études (clinique, épidémiologiques...) ou d'expérimentation (médecine - biologie...) et plus généralement à toute personne confronté à la variabilité biologique (en particulier en bio-informatique).

Il demande d'avoir des notions générales en mathématiques (niveau 1er ou terminale). Des connaissances supplémentaires en probabilité ou statistique sont appréciées.

Objectifs pédagogiques

Donner les connaissances nécessaires

- à la préparation d'une expérience correcte du point de vue statistique en fonction des objectifs de l'étude
- à la description et à l'analyse statistique des données recueillies
- pour interpréter correctement les résultats obtenus et pour savoir les communiquer.

Compétences

A l'issue de l'enseignement l'étudiant devra savoir :

- Aborder méthodiquement un protocole expérimental.
- Maîtriser les outils simples d'exploration des données.
- Maîtriser le choix d'un modèle statistique simple représentant au mieux les données.
- Maîtriser le choix d'un outil d'aide à la décision (test statistique) en adéquation au contexte expérimental.

De ce fait il doit pouvoir acquérir un regard critique lui permettant d'analyser les résultats d'une enquête ou d'une expérience.

Programme

Contenu

• **Notions de base** : La variabilité - l'échantillonnage - la représentativité - notions de rééchantillonnage.

Qu'est-ce qu'une expérience contrôlée - une étude descriptive - exemples : études cas-témoins - cohortes...

Comment aborder un problème de statistique (description, modèle, hypothèses, décision) '

- Statistique descriptive : présentation graphique des données (histogramme), paramètres empiriques (*proportion, moyenne, mode, quantiles, variance*), fonction de répartition observée, tableau de contingence.
- Rappels rapides sur le calcul de probabilité : combinatoire, événements.
- L'information a priori : probabilité conditionnelle, théorème de Bayes, sensibilité, spécificité, valeurs prédictives positives et négatives, risque relatif, courbes ROC
- Variables aléatoires : définitions, distribution de probabilité, espérance, variance Variable centrée et réduite.
- Lois de probabilités usuelles : loi binomiale, loi de Poisson, loi normale, loi Pearson (*Khi 2*), loi de Student, loi de Fisher. Conditions et contextes d'applications. Théorème de la limite centrale.
- **Estimation** : estimation ponctuelle, qualité d'un estimateur, intervalle de confiance de paramètres usuels (espérances, variances, fréquences).
- Principes généraux des tests : risques de 1ère et 2ème espèce; degré de signification (p).
- Tests paramétriques et non paramétriques :

Code: STA109

Unité d'enseignement de type cours

6 crédits

Volume horaire de référence (+/-

10%): 50 heures

Responsabilité nationale :

EPN06 - Mathématique et statistique / Aurélien LATOUCHE

Contact national:

EPN06 Mathématiques et statistiques

2 rue conté

Accès 35 3 ème étage porte 19 75003 Paris

Anne - Solenne Maroulle

anne

solenne.marroulle@lecnam.net

- 1. tests portant sur la comparaison de proportions ou de distributions.
- 2. tests portant sur la comparaison de moyennes ou de variances d'un ou de deux échantillons indépendants ou appariés.
- 3. test portant sur la comparaison de plusieurs moyennes sur des échantillons indépendants.
- 4. test des signes, test de Wilcoxon, test de Mann-Witney, test de Spearman, test de Kruskal et Wallis
- 5. détermination du nombre d'observations (ou de sujets) nécessaires.
- Modèle linéaire : régression simple, test d'indépendance.

Les exercices dirigés seront illustrés par des exemples à l'aide du logiciel R

Bibliographie

Titre	Auteur(s)
http://www.agro-montpellier.fr/cnam-lr/statnet/	St@tNet
Méthodes statistiques -Médecine - Biologie (Estem 2000)	BOUYER J.
Méthodes statistiques Exercices corrigés (Estem 2001)	BOUYER J.
Biostatistique, Flammarion, 2007	VALLERON, A.J.
Comprendre et utiliser les statistiques dans les sciences de la vie (Masson, 2005)	FALISSARD, B