RCP208

Apprentissage statistique : modélisation descriptive et introduction aux réseaux de neurones


6 crédits Michel CRUCIANU EPN05 - Informatique Unité d'enseignement de type cours

Publié Du 01-09-2007 au 31-08-9999

Prérequis

Cet enseignement s'adresse aux auditeurs souhaitant acquérir des connaissances de base sur l'analyse des données, la reconnaissance des formes et la fouille de données (data mining).
Prérequis obligatoires : avoir suivi le cycle préparatoire de l'EICNAM ou avoir un niveau équivalent (licence).

Objectifs pédagogiques

Ce cours donne des éléments de base de l'analyse des données et de la modélisation descriptive, ainsi que des principes à mettre en œuvre pour traiter des applications réelles. Une introduction à la modélisation décisionnelle avec des réseaux de neurones est également présentée. L'analyse des données et la modélisation descriptive aident à comprendre les données empiriques issues de phénomènes naturels, économiques ou socio-culturels. Cette compréhension facilite la mise en œuvre de méthodes performantes de construction de modèles décisionnels.
Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, les enquêtes d'opinion, le marketing, la gestion de la relation client, la climatologie, la sécurité, etc.
L'enseignement adopte une approche pragmatique, les séances de travaux pratiques permettant la mise en œuvre systématique des méthodes présentées.
Les unités d'enseignement RCP209 « Apprentissage statistique : modélisation décisionnelle et apprentissage profond », RCP211 « Intelligence artificielle avancée » et RCP217 « Intelligence artificielle pour des données multimédia » sont des suites recommandées de RCP208.

Compétences

Analyse des données, modélisation descriptive à partir de données, introduction à la modélisation décisionnelle avec application à la reconnaissance des formes et à la fouille de données.

Contenu

Les thèmes abordés dans les séances de cours et de travaux pratiques (TP) sont :

  • Applications, nature des problèmes de modélisation et spécificités des données.
  • Analyse des données, réduction de dimension : méthodes factorielles.
  • Réduction non-linéaire de dimension : UMAP, t-SNE.
  • Sélection de variables.
  • Classification automatique : k-moyennes, DBSCAN.
  • Estimation de densités : noyaux, modèles de mélange.
  • Imputation des données manquantes.
  • Réseaux de neurones multi-couches : architectures, capacités d'approximation, apprentissage et régularisation, explicabilité.

Chaque séance de cours est suivie d'une séance de TP permettant de mettre en œuvre les méthodes présentées.
Les TP sont réalisés en utilisant principalement la plateforme Scikit-learn. Une introduction rapide au langage Python, à NumPy, à matplotlib et à Scikit-learn est prévue lors des premières séances de TP.

Modalités de validation

  • Examen final

Description des modalités de validation

Examen ; certaines questions peuvent porter sur les travaux pratiques.

Bibliographie

TitreAuteur(s)
Reconnaissance des formes : méthodes et applications. Ed. Inter Editions.A. Belaid, Y. Belaid
Réseaux de neurones : méthodologies et applications. Ed. Eyrolles.G. Dreyfus, et al
Méthodes factorielles pour l'analyse des données : méthodes linéaires et extensions non-linéaires. Ed. Hermès.M. Crucianu, J.-P. Asselin de Beauville, R. Boné
Probabilités, analyse des données et statistique. Ed. TECHNIP.G. Saporta
Principles of Data Mining (Adaptive Computation and Machine Learning). Ed. Bradford Book.D.J. Hand, H. Mannila, P. Smyth

Thésaurus du Cnam :

  • Analyse factorielle
  • Intelligence artificielle
  • Algorithme d'apprentissage
  • Modélisation quantitative
  • Modélisation statistique
  • Aide à la décision

Thésaurus Formacode :

  • 31028 - intelligence artificielle
  • 11016 - analyse données
  • 30812 - langage Python

Secrétariat

Libellé
EPN05 - Informatique
Nom du contact
Swathi RANGANADIN RAJASELVAM
Numéros de téléphone
01 40 27 22 58
Adresse postale
2 rue Conté
Paris 75003

Personnes impliquées nationalement

  • Arnaud BRELOY