IAML : IA et du ML pour la cybersécurité
6 crédits Véronique LEGRAND EPN05 - Informatique Unité d'enseignement de type cours
Publié Du 01-09-2020 au 31-08-9999
Il est fortement conseillé d'avoir suivi les unités d'enseignement suivantes : SEC102, SEC105, RCP101 ou RCP105, SEC107,
De même, la connaissance des langages python ou tout autre langage de programmation
Enfin il est recommandé de ne suivre qu'une UE 200 par semestre.
L’objectif pédagogique du cours sera d'apprendre à modéliser et concevoir des moteurs d'apprentissage artificiel simples (ML), supervisés et non supervisés susceptibles d'être utilisés dans un centre de sécurité opérationnel (SOC) en complément d'outils de gestion des informations de sécurité (SIEM). Il permettra de mettre en place une gestion des connaissances cyber (KM), à partir d'ontologies ou de graphes de connaissances. Il vous permettra également d'explorer des techniques intéressantes pour la cybersécurité comme le "process mining" (PM).
Enfin, dans un contexte où les hautes technologies évoluent rapidement, il est difficile de faire des choix structurants face à une problématique de traitement de données massives. Le cours vous "apprendra à apprendre" à maitriser ces "deep tech" à partir du module de recherche bibliographique, qui vous apprendra à avoir une démarche scientifique pour connaitre et évaluer l'état de l'art.
Le cours vise l’acquisition de compétences élevées qui permettront de mener des activités d'extraction, d'analyses et de présentation sur les données massives présentes dans les centres de sécurité opérationnelle (SOC) à des fins d'investigation (forensic) ou d’anticipation de la menace (CTI-Hunting).
Ces compétences (listées ci-dessous et issues d'offres d'emplois) sont demandées à un ingénieur informatique parcours cybersécurité :
Ces exemples de compétences font appel aux savoirs de conception, analyse, développement d'un prototype impliquant du machine learning (ML), de la gestion des connaissances (knowledge management (KM)) ou du process mining (PM).
L'unité SEC201 apparaît dans 1 cursus.
Le déploiement des enseignements s'effectue à raison d'un volume de 12 unités temps (UT).
Temps 1 : IAML pour la cyber
(IA/ML 1 UT*)
Histoire, enjeux et champ disciplinaire de l'intelligence artificielle.
Techniques de l'intelligence artificielle au service de la cybersécurité.
Fondamentaux de la détection d’anomalie à partir des données.
Typologie des données de sécurité traitées pour l'apprentissage (hétérogénité, structures, ..).
Modèle général du traitement automatique des logs.
Temps 2 : KM
(KM : 4 UT*)
Fondamentaux pour la gestion des connaissances
Langages semi-formels : ontologies et web sémantique
Temps 3 : ML
(ML : 4 UT*)
Classifications statistiques : supervisées, semi-supervisées, non supervisées
Fondamentaux pour l'apprentissage artificiel
Techniques du machine learning (Réseaux de neurone, Deep learning).
Temps 4 : PM
(PM : 1 UT*)
Généralités sur le Process Mining
Temps 5 : RB : IA/ML pour la cyber
RB: 4 UT*)
Lien avec les applications actuelles en cybersécurité au travers d'une étude bibliographique tutorée par un enseignant chercheur,
Outils de cybersécurité à base de machine learning, knowledge management et IA.
Remarques
*Par semaine, 1 UT comprend deux heures de cours, deux heures de travaux pratiques, attend quatre heures à minima de travail personnel. Chaque UT est donc espacée d'une semaine, ce rythme doit être pris en compte dans la planification des enseignements
Controle continu
Recherche bibliographique avec une note individuelle