STA110

Modélisation statistique


9 crédits Vincent AUDIGIER EPN06 - Mathématique et statistique Unité d'enseignement de type cours

Publié Du 01-09-2007 au 31-08-9999

Prérequis

Avoir le niveau de l'unité d'enseignement : STA. 103 (calcul des probabilités) et STA001 (Techniques de la statistique)

Objectifs pédagogiques

Maîtriser les outils de la modélisation statistique (sélection de modèles, validation, interprétation) dans un contexte général (données continues, discrètes, qualitatives, mixtes) via l'utilisation de méthodes paramétriques (modèles linéaires et modèle linéaire généralisé) ou non-paramétriques.

Acquérir des connaissances ainsi qu'un savoir-faire dont l'objectif est de traiter un problème concret par une approche de modélisation (applications à des données réelles).

Mettre en œuvre cette modélisation à l'aide d'un logiciel de modélisation statistique avancé (logiciel R) et savoir interpréter les résultats obtenus.

Compétences

Statisticien modélisateur

Contenu

I) Méthodes paramétriques

Régression linéaire simple et multiple : modèle, moindres carrés, estimations, intervalles de confiance, tests, colinéarité, sélection de variables, validation, prédiction, interprétation. Recherche de points (aberrants, influents, atypiques et de points leviers).

Analyse de la Variance : à 1 facteur (mesures indépendantes, répétées) et à 2 facteurs (mesures indépendantes)  

Analyse de la Covariance (modèles, comparaison à la régression linéaire et à l'ANOVA à 1 facteur à mesures indépendantes, paradoxe de Lord)

Régression logistique : modèle probit et logit, estimations, tests, sélection de modèles, validation, prédiction.

Modèle linéaire généralisé (regression de Poisson, modèle polytomique)

Introduction à la modélisation Bayésienne
Introduction à l'analyse de séries temporelles


II) Méthodes non-paramétriques

Régression spline

Estimateurs par moyennes locales (estimateurs à noyau)

Régression polynomiale locale

 

L'enseignement comporte une initiation au logiciel R et une mise en oeuvre de ce logiciel dans diverses applications.

Modalités de validation

  • Projet(s)

Description des modalités de validation

L'évaluation se fera uniquement sous la forme de projets consistant en l'application des différentes méthodes de modélisation sur des données réelles. Cette évaluation sur projet sera complétée par une présentation orale.

Bibliographie

TitreAuteur(s)
Regression analysis of count data models (Cambridge University Press)CAMERON, TRIVEDI
Time series analysis (Princeton University Press)HAMILTON
Le modèle linéaire par l’exemple (Dunod)Azaïs J-M., Bardet J-M
Régression linéaire : Théorie et applications (Statistiques et probabilités appliquées))Cornillon P., Matzner-Lober, E.
Statistiques avec R (PUR), Cornillon, PA, Guyader, A., Husson, F., Jégou, N., Josse, J., Kloareg, M., Matzner-Lober, E., Rouvière, L.
Statistique inférentielle : idées, démarches, exemples. (PUR)J.J. Daudin, S. Robin, C. Vuillet
Modèle linéaire, Comparaison de groupes et régression (Les Editions INSERM)Prum, B.
Probabilités, Analyse des données et Statistiques (Technip)G. Saporta

Thésaurus du Cnam :

  • Application statistique
  • Statistique inférentielle
  • Estimation non paramétrique
  • Modèle linéaire
  • Modèle linéaire généralisé
  • Modélisation statistique
  • Régression linéaire
  • Régression logistique

Thésaurus Formacode :

  • 11057 - statistique inférentielle
  • 31068 - méthode analyse

Secrétariat

Libellé
EPN06 Mathématiques et statistiques
Nom du contact
Sabine Glodkowski
Numéros de téléphone
Aucun numéro de téléphone
Adresse postale
2 rue conté Accès 35 3 ème étage porte 19
Paris 75003